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at All Stages
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Use Survey Weights at All Stages

• use the sampling weights in the propensity score 
model

• use the sampling weight times the propensity score 
weight in the final outcome analysis
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Outline

• Background
• Derivation
• Risks that proper use of sampling weights avoid
• Simulation and analysis of police survey data
• Conclusions
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Applied Researchers Confused About 
Propensity Scores and Survey Weights
• DuGoff, Schuler, and Stuart (2014) found 28 health 

services research studies with design weights and 
analyses involving propensity scores

• 16 ignored the weights completely
• 7 used the weights only in the outcome model
• 5 used the weights in both the propensity score and 

outcome model
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Statistical Literature Offers 
Conflicting Advice

“we argue that the propensity score model 
does not need to be survey-weighted, as 
we are not interested in generalizing the 
propensity score model to the population”
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Statistical Literature Offers 
Conflicting Advice

correct analyses depend on analysts 
considering “the joint distribution of 
the observations and of the sampling 
and assignment indicator variables”

“recommend including the sampling weight as a 
predictor in the propensity score model”
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• Risks that proper use of sampling weights avoid
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Average Treatment Effect on the Treated 
Is Today’s Focus

�𝐸𝐸 𝑦𝑦1 − 𝑦𝑦0 𝑡𝑡 = 1 =
∑𝑖𝑖=1𝑛𝑛 𝑡𝑡𝑖𝑖

1
𝑝𝑝𝑖𝑖
𝑦𝑦1𝑖𝑖

∑𝑖𝑖=1𝑛𝑛 𝑡𝑡𝑖𝑖
1
𝑝𝑝𝑖𝑖

−
∑𝑖𝑖=1𝑛𝑛 (1 − 𝑡𝑡𝑖𝑖)𝑤𝑤𝑖𝑖𝑦𝑦0𝑖𝑖
∑𝑖𝑖=1𝑛𝑛 (1 − 𝑡𝑡𝑖𝑖)𝑤𝑤𝑖𝑖

• 𝑡𝑡𝑖𝑖 is a 0/1 treatment indicator
• 𝑦𝑦1𝑖𝑖  is the treatment outcome of case i
• 𝑦𝑦0𝑖𝑖  is the control outcome of case i
• 𝑝𝑝𝑖𝑖 is the sampling probability
• 𝑤𝑤𝑖𝑖 combines sampling weights and propensity score 

weights
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Weights That Align 𝑓𝑓(𝐱𝐱) for 
Treated and Sampled Controls

𝑓𝑓 𝐱𝐱 𝑡𝑡 = 1 = 𝑤𝑤 𝐱𝐱 𝑓𝑓(𝐱𝐱|𝑡𝑡 = 0, 𝑠𝑠 = 1)

• Rearranging + Bayes Theorem

𝑤𝑤 𝐱𝐱 =
𝑓𝑓(𝑠𝑠 = 1|𝑡𝑡 = 0)

𝑓𝑓(𝑡𝑡 = 0)
1

𝑓𝑓(𝑠𝑠 = 1|𝑡𝑡 = 0, 𝐱𝐱)
𝑓𝑓(𝑡𝑡 = 1|𝐱𝐱)

1 − 𝑓𝑓(𝑡𝑡 = 1|𝐱𝐱)

• 𝑓𝑓(𝑡𝑡 = 1|𝐱𝐱) ≠ 𝑓𝑓(𝑡𝑡 = 1|𝐱𝐱, 𝑠𝑠 = 1)

�𝐸𝐸 𝑦𝑦0 𝑡𝑡 = 1 =
∑𝑖𝑖=1𝑛𝑛 (1 − 𝑡𝑡𝑖𝑖)

1
𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖
1 − 𝑒𝑒𝑖𝑖

𝑦𝑦0𝑖𝑖

∑𝑖𝑖=1𝑛𝑛 (1 − 𝑡𝑡𝑖𝑖)
1
𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖
1 − 𝑒𝑒𝑖𝑖
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Risk #1: Missing Sampling Weight 
Variable in Propensity Score
• Sampling and treatment assignment depend on z, 

but potential outcomes do not depend on z

N x z 𝑃𝑃(𝑠𝑠 = 1|𝑥𝑥, 𝑧𝑧) 𝑃𝑃(𝑡𝑡 = 1|𝑥𝑥, 𝑧𝑧) 𝐸𝐸(𝑦𝑦0|𝑥𝑥, 𝑧𝑧) 𝐸𝐸(𝑦𝑦1|𝑥𝑥, 𝑧𝑧)
1,000 0 0 0.2 0.1 1 1
1,000 0 1 0.3 0.9 1 1
1,000 1 0 0.4 0.8 4 4
1,000 1 1 0.5 0.8 4 4

𝑡𝑡 = 1 𝑡𝑡 = 0 𝑡𝑡 = 0
Sampling weight PS model
Sampling weight outcomes Yes
E(𝑥𝑥|𝑡𝑡) 0.615
E(𝑦𝑦𝑡𝑡|𝑡𝑡 = 1) 2.846

𝑃𝑃 𝑡𝑡 = 1 𝑥𝑥 = 0 = 0.50
𝑃𝑃 𝑡𝑡 = 1 𝑥𝑥 = 0, 𝑠𝑠 = 1 = 0.58
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Risk #1: Missing Sampling Weight 
Variable in Propensity Score
• Sampling and treatment assignment depend on z, 

but potential outcomes do not depend on z

N x z 𝑃𝑃(𝑠𝑠 = 1|𝑥𝑥, 𝑧𝑧) 𝑃𝑃(𝑡𝑡 = 1|𝑥𝑥, 𝑧𝑧) 𝐸𝐸(𝑦𝑦0|𝑥𝑥, 𝑧𝑧) 𝐸𝐸(𝑦𝑦1|𝑥𝑥, 𝑧𝑧)
1,000 0 0 0.2 0.1 1 1
1,000 0 1 0.3 0.9 1 1
1,000 1 0 0.4 0.8 4 4
1,000 1 1 0.5 0.8 4 4

𝑡𝑡 = 1 𝑡𝑡 = 0 𝑡𝑡 = 0
Sampling weight PS model Yes
Sampling weight outcomes Yes Yes
E(𝑥𝑥|𝑡𝑡) 0.615 0.615
E(𝑦𝑦𝑡𝑡|𝑡𝑡 = 1) 2.846 2.846
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Risk #1: Missing Sampling Weight 
Variable in Propensity Score
• Sampling and treatment assignment depend on z, 

but potential outcomes do not depend on z

N x z 𝑃𝑃(𝑠𝑠 = 1|𝑥𝑥, 𝑧𝑧) 𝑃𝑃(𝑡𝑡 = 1|𝑥𝑥, 𝑧𝑧) 𝐸𝐸(𝑦𝑦0|𝑥𝑥, 𝑧𝑧) 𝐸𝐸(𝑦𝑦1|𝑥𝑥, 𝑧𝑧)
1,000 0 0 0.2 0.1 1 1
1,000 0 1 0.3 0.9 1 1
1,000 1 0 0.4 0.8 4 4
1,000 1 1 0.5 0.8 4 4

𝑡𝑡 = 1 𝑡𝑡 = 0 𝑡𝑡 = 0
Sampling weight PS model Yes No
Sampling weight outcomes Yes Yes Yes
E(𝑥𝑥|𝑡𝑡) 0.615 0.615 0.537
E(𝑦𝑦𝑡𝑡|𝑡𝑡 = 1) 2.846 2.846 2.610
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Risk #2: Spending Degrees of 
Freedom in the Wrong Places
• Recommend using modern statistical methods for 

estimating propensity scores, such as gbm/fastDR
• Quality of the propensity score will matter most for 

x with large sampling weight

𝑤𝑤 𝐱𝐱 =
1

𝑓𝑓(𝑠𝑠 = 1|𝑡𝑡 = 0, 𝐱𝐱)
𝑓𝑓(𝑡𝑡 = 1|𝐱𝐱)

1 − 𝑓𝑓(𝑡𝑡 = 1|𝐱𝐱)
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Risk #2: Spending Degrees of 
Freedom in the Wrong Places

• Treatment group 
mean = 65.45

• Control mean 
w/o sampling 
weights = 63.48

• Control mean 
with sampling 
weights = 65.67
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�𝑃𝑃(𝑡𝑡 = 1|𝑥𝑥)
�𝑃𝑃(𝑡𝑡 = 1|𝑥𝑥, 𝑠𝑠 = 1)
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Risk #3: Weighted Samples Drawn 
from Different Sources
• Data fusion matches a collection of cases in 

two data sources that have similar features
• Harrell et al (2004) compared military spouses 

with similar members of the general public
• Rässler (2002) compared television viewing and 

consumer behavior

• Respondents with the same weight will not 
share the same features

• Sampling probability depends on the 
treatment assignment
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Simulation Varied Relationships 
Between x, t, s, y0, and y1
• DuGoff, Schuler, and Stuart (2014) simulation

• 𝑋𝑋𝑖𝑖~𝑁𝑁(𝜇𝜇𝑗𝑗 , 1)
• 30,000 from 𝜇𝜇1 = −1

4
• 30,000 from 𝜇𝜇2 = 0
• 30,000 from 𝜇𝜇3 = 1

4
• logit 𝑃𝑃 𝑡𝑡 = 1 𝑥𝑥 = −1 + 1.39𝑥𝑥
• logit 𝑃𝑃 𝑠𝑠 = 1 𝑥𝑥, 𝑡𝑡 = −2.8 − 1.39𝑥𝑥
• 𝑦𝑦0~𝑁𝑁 1 + 𝑥𝑥, 1

4
 and 𝑦𝑦1~𝑁𝑁 𝑦𝑦0 + 0.2 + 0.1𝑥𝑥, 1

4
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Considered Alternate Scenarios of 
Nonlinearity and Dependence
• DuGoff, Schuler, and Stuart (2014) simulation

• 𝑋𝑋𝑖𝑖~𝑁𝑁(𝜇𝜇𝑗𝑗 , 1)
• 30,000 from 𝜇𝜇1 = −1

4
• 30,000 from 𝜇𝜇2 = 0
• 30,000 from 𝜇𝜇3 = 1

4
• logit 𝑃𝑃 𝑡𝑡 = 1 𝑥𝑥 = −1 + 1.39𝑥𝑥2
• logit 𝑃𝑃 𝑠𝑠 = 1 𝑥𝑥, 𝑡𝑡 = −2.8 − 0.69𝑥𝑥 − 0.69𝑡𝑡
• 𝑦𝑦0~𝑁𝑁 1 + 𝑥𝑥, 1

4
 and 𝑦𝑦1~𝑁𝑁 𝑦𝑦0 + 0.2 + 0.1𝑥𝑥, 1

4
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Considered Alternate Scenarios of 
Dependence and Nonlinearity

Standard Random 
sample

Selection 
depends on 

(x, t)

Weight 
scales
differ

Non-linear
treatment

Select 𝑠𝑠~𝑥𝑥 𝑠𝑠 ⊥ 𝑥𝑥 𝑠𝑠~(𝑥𝑥, 𝑡𝑡) 𝑠𝑠~𝑥𝑥|𝑡𝑡 𝑠𝑠~𝑥𝑥
Treatment 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥2
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Considered Four Different 
Approaches to Estimation

Standard Random 
sample

Selection 
depends on 

(x, t)

Weight 
scales
differ

Non-linear
treatment

Select 𝑠𝑠~𝑥𝑥 𝑠𝑠 ⊥ 𝑥𝑥 𝑠𝑠~(𝑥𝑥, 𝑡𝑡) 𝑠𝑠~𝑥𝑥|𝑡𝑡 𝑠𝑠~𝑥𝑥
Treatment 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥2

Sampling 
weights PS model

No 𝑡𝑡~1
No 𝑡𝑡~𝑥𝑥

Covariate 𝑡𝑡~𝑥𝑥 + 𝑠𝑠𝑠𝑠
Weight 𝑡𝑡~𝑥𝑥
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Using Sampling Weights Consistently 
Provides Good Covariate Balance, 
Standardized Mean Difference in x

Standard Random 
sample

Selection 
depends on 

(x, t)

Weight 
scales
differ

Non-linear
treatment

Select 𝑠𝑠~𝑥𝑥 𝑠𝑠 ⊥ 𝑥𝑥 𝑠𝑠~(𝑥𝑥, 𝑡𝑡) 𝑠𝑠~𝑥𝑥|𝑡𝑡 𝑠𝑠~𝑥𝑥
Treatment 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥2

Sampling 
weights PS model

No 𝑡𝑡~1 1.18 1.06 1.10 1.17 0.13
No 𝑡𝑡~𝑥𝑥 0.17 0.03 0.08 0.16 0.74

Covariate 𝑡𝑡~𝑥𝑥 + 𝑠𝑠𝑠𝑠 0.12 0.03 1.57 0.44 1.10
Weight 𝑡𝑡~𝑥𝑥 0.12 0.02 0.06 0.11 0.08
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Using Sampling Weights Consistently 
Provides Lowest RMSE of ATT

Standard Random 
sample

Selection 
depends on 

(x, t)

Weight 
scales
differ

Non-linear
treatment

Select 𝑠𝑠~𝑥𝑥 𝑠𝑠 ⊥ 𝑥𝑥 𝑠𝑠~(𝑥𝑥, 𝑡𝑡) 𝑠𝑠~𝑥𝑥|𝑡𝑡 𝑠𝑠~𝑥𝑥
Treatment 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥 𝑡𝑡~𝑥𝑥2

Sampling 
weights PS model

No 𝑡𝑡~1 1.041 1.079 1.055 1.046 0.160
No 𝑡𝑡~𝑥𝑥 0.230 0.041 0.109 0.214 0.674

Covariate 𝑡𝑡~𝑥𝑥 + 𝑠𝑠𝑠𝑠 0.161 0.041 1.615 0.401 1.175
Weight 𝑡𝑡~𝑥𝑥 0.155 0.039 0.093 0.149 0.113
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COPS Recruit Study Examined Barriers 
When Considering Policing Careers
• 2009 Insights from the Newest Members of America’s Law 

Enforcement Community survey
• National pool of 1,600 respondents from 44 of the largest police 

and sheriff departments
• Asked recruits about 

• reasons for pursuing a career in law enforcement
• disadvantages of such a career
• influencers on career choices
• perceived effectiveness of recruiting strategies

• Compare white and minority candidates on attractions and 
barriers

• minority recruits more likely to be female, be married, have children, 
and never have attended college

• respondents more likely to be married, have children, and never have 
attended college
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Balance of 22 Covariates Improved by 
Using Sampling Weights Throughout
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Effects Can Move Estimates in 
Either Direction
• Minority officers are significantly more concerned 

about benefits, particularly health insurance
• odds ratio of 2.68 without sampling weights throughout
• odds ratio of 2.56 with sampling weights throughout

• Police excessive force concerns minority officers to 
the point they consider not joining

• odds ratio of 1.64 without sampling weights throughout
• odds ratio of 1.93 with sampling weights throughout
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Use Sampling Weights Throughout 
Propensity Score Analyses
• Estimate 𝑃𝑃(𝑡𝑡 = 1|𝑥𝑥) not 𝑃𝑃(𝑡𝑡 = 1|𝑥𝑥, 𝑠𝑠 = 1), 

achievable by using sampling weights

• Weight treatment cases as 1
𝑃𝑃(𝑠𝑠=1|𝑡𝑡=1,𝐱𝐱)

• Weight control cases as 1
𝑃𝑃(𝑠𝑠=1|𝑡𝑡=0,𝐱𝐱)

𝑃𝑃(𝑡𝑡=1|𝐱𝐱)
1−𝑃𝑃(𝑡𝑡=1|𝐱𝐱)

• Protects against 
• variables unavailable for propensity scores, but baked 

into sampling weights
• allocating degrees of freedom to the wrong regions of x
• sampling weights that depend on treatment assignment
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