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Use Survey Weights
at All Stages



Use Survey Weights at All Stages

* use the sampling weights in the propensity score
model

e use the sampling weight times the propensity score
weight in the final outcome analysis
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Outline

* Background

* Derivation

 Risks that proper use of sampling weights avoid
e Simulation and analysis of police survey data

* Conclusions
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Applied Researchers Confused About
Propensity Scores and Survey Weights

* DuGoff, Schuler, and Stuart (2014) found 28 health
services research studies with design weights and
analyses involving propensity scores

* 16 ignored the weights completely
e 7 used the weights only in the outcome model

* 5 used the weights in both the propensity score and
outcome model
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Statistical Literature Offers
Conflicting Advice

“we argue that the propensity score model
does not need to be survey-weighted, as
we are not interested in generalizing the
propensity score model to the population”
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Statistical Literature Offers
Conflicting Advice

correct analyses depend on analysts
considering “the joint distribution of
the observations and of the sampling
and assignment indicator variables”

“recommend including the sampling weight as a
predictor in the propensity score model”
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Outline

* Background

* Derivation

* Risks that proper use of sampling weights avoid
e Simulation and analysis of police survey data

 Conclusions
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Average Treatment Effect on the Treated
s Today’s Focus
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* t; is a 0/1 treatment indicator

* y4; is the treatment outcome of case i
* Vo; is the control outcome of case i

* p; is the sampling probability

* w; combines sampling weights and propensity score
weights
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Weights That Align f(X) for
Treated and Sampled Controls

f&lt=1) =w®fX|t =05 =1)

* Rearranging + Bayes Theorem

_f(s=1]t=0) 1 f(t =1[x)

w(x) = fF(t=0) f(s=1t=0x)1—f(t=1|x)

s f(t=1x)=f(t=1|x,s=1)

E(ylt =1) =
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Outline

 Risks that proper use of sampling weights avoid
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Risk
Varia

1: Missing Sampling Weight

ole in Propensity Score

 Sampling and treatment assighment depend on z,
but potential outcomes do not depend on z

N X z P(s=1|x,z) Pt =1|x,z) E(yylx,z) E(yl|x,2)
1,000 0 0 0.2 0.1 P(t = 1|x = 0) = 0.50
1,000 0 1 0.3 0.9 P(t=1lx=0,5s = 1) = 0.58
1,000 1 0 0.4 0.8 7 o
1,000 1 1 0.5 0.8 4 4
t=1 t=0 t=20

Sampling weight PS model

Sampling weight outcomes Yes

E(x|t) 0.615

EQyt=1) 2.846
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1: Missing Sampling Weight

ole in Propensity Score

 Sampling and treatment assighment depend on z,
but potential outcomes do not depend on z

N X z P(s=1|x,z) Pt =1|x,z) E(yylx,z) E(yl|x,2)
1,000 0 0 0.2 0.1 1 1
1,000 0 1 0.3 0.9 1 1
1,000 1 0 0.4 0.8 4 4
1,000 1 1 0.5 0.8 4 4

e | t = t=20
Sampling weight PS model Yes
Sampling weight outcomes Yes Yes
E(x|t) 0.615 0.615
EQyt=1) 2.846 2.846
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Risk
Varia

1: Missing Sampling Weight

ole in Propensity Score

 Sampling and treatment assighment depend on z,
but potential outcomes do not depend on z

N X z P(s=1|x,z) Pt =1|x,z) E(yylx,z) E(yl|x,2)
1,000 0 0 0.2 0.1 1 1
1,000 0 1 0.3 0.9 1 1
1,000 1 0 0.4 0.8 4 4
1,000 1 1 0.5 0.8 4 4

e | t = t =
Sampling weight PS model Yes No
Sampling weight outcomes Yes Yes Yes
E(x|t) 0.615 0.615 0.537
EQyt=1) 2.846 2.846 2.610
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Risk #2: Spending Degrees of
-reedom in the Wrong Places

e Recommend using modern statistical methods for
estimating propensity scores, such as gbm/fastDR

* Quality of the propensity score will matter most for
X with large sampling weight

| f(t =1|x)
f(s=1t=0,x)1—f(t = 1|x)

w(x) =
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Risk #2: Spending Degrees of
-reedom in the Wrong Places

f(x)
flxls=1)
* Treatment group
i mean = 65.45
1 e Control mean
| w/o sampling
i Pit=1xs=1) weights = 63.48
o1y N

\ e Control mean
— with sampling

weights = 65.67
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Risk

* Data fusion matches a collection of cases in
two data sources that have similar features

e Harrell et al (2004) compared military spouses
with similar members of the general public

from Different Sources

3: Weighted Samples Drawn

_ Mt

Irrgloymaent and [ducstian

e Rassler (2002) compared television viewing and  wwssen

consumer behavior

* Respondents with the same weight will not
share the same features

* Sampling probability depends on the

treatment assignment
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Outline

e Simulation and analysis of police survey data
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Simulation Varied Relationships
Between x, t, s, y,, and y,

e DuGoff, Schuler, and Stuart (2014) simulation
* Xi~N(uj1)
- 30,000 from p; = —i
* 30,000 from u, =0
30,000 from 415 = -
* logit P(t = 1|x) = -1+ 1.39x
* logit P(s = 1|x,t) = —2.8 — 1.39x

* Yo~N (1+x,3) and y;~N (¥, + 0.2 + 0.1x,7)
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Considered Alternate Scenarios of
Nonlinearity and Dependence

e DuGoff, Schuler, and Stuart (2014) simulation
* Xi~N(uj1)
- 30,000 from p; = —i
* 30,000 from u, =0
30,000 from 415 = -
e logit P(t = 1|x) = —1 + 1.39x?
* logit P(s = 1|x,t) = —2.8 — 0.69x — 0.69t

* Yo~N (1+x,3) and y;~N (¥, + 0.2 + 0.1x,7)
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Considered Alternate Scenarios of
Dependence and Nonlinearity

Selection Weight

Random Non-linear
Standard depends on scales
sample : treatment
(x, t) differ
Select  s~x slx s~(x,t) s~x|t S~X

Treatment t~x t~x t~x t~x t~x2
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Considered Four Different
Approaches to Estimation

Selection Weight :
Random Non-linear
Standard depends on scales
sample : treatment
(x, t) differ
Select  s~x slx s~(x,t) s~x|t S~X
Treatment  t~x t~x t~x t~x t~x?
Samplin
.p 8 PS model
weights
No t~1
No t~x

Covariate t~x + sw

Weight t~x
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Using Sampling Weights Consistently
Provides Good Covariate Balance,
Standardized Mean Difference in x

Selection Weight :
Random Non-linear
Standard cample depends on scales treatment
P (x, t) differ
Select  s~x slx s~(x,t) s~x|t S~X
Treatment  t~x t~x t~x t~x t~x?
Samplmg PS model
weights
\fo} t~1 1.18 1.06 1.10 1.17 0.13
No t~x 0.17 0.03 0.08 0.16 0.74
Covariate t~x + sw 0.12 0.03 1.57 0.44 1.10
Weight t~x 0.12 0.02 0.06 0.11 0.08
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Using Sampling Weights Consistently
Provides Lowest RMSE of ATT

Selection Weight :
Random Non-linear
Standard cample depends on scales treatment
P (x, t) differ
Select  s~x slx s~(x,t) s~x|t S~X
Treatment  t~x t~x t~x t~x t~x?
Samplmg PS model
weights
\fo} t~1 1.041 1.079 1.055 1.046 0.160
\fo} t~x 0.230 0.041 0.109 0.214 0.674
Covariate t~x + sw 0.161 0.041 1.615 0.401 1.175

Weight t~x 0.155 0.039 0.093 0.149 0.113
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COPS Recruit Study Examined Barriers
When Considering Policing Careers

e 2009 Insights from the Newest Members of America’s Law
Enforcement Community survey

* National pool of 1,600 respondents from 44 of the largest police
and sheriff departments

* Asked recruits about
* reasons for pursuing a career in law enforcement
» disadvantages of such a career
* influencers on career choices
* perceived effectiveness of recruiting strategies

 Compare white and minority candidates on attractions and
barriers

* minority recruits more likely to be female, be married, have children,
and never have attended college

* respondents more likely to be married, have children, and never have
attended college
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Balance of 22 Covariates Improved by
Using Sampling Weights Throughout
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Effects Can Move Estimates in
Either Direction

* Minority officers are significantly more concerned
about benefits, particularly health insurance

* odds ratio of 2.68 without sampling weights throughout
e odds ratio of 2.56 with sampling weights throughout

* Police excessive force concerns minority officers to
the point they consider not joining

e odds ratio of 1.64 without sampling weights throughout
e odds ratio of 1.93 with sampling weights throughout
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Outline

* Background

* Derivation

* Risks that proper use of sampling weights avoid
e Simulation and analysis of police survey data

* Conclusions
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Use Sampling Weights Throughout
Propensity Score Analyses

* Estimate P(t = 1|x) not P(t = 1|x,s = 1),
achievable by using sampling weights
1
P(s=1|t=1,X)
1 P(t=1|x)
P(s=1|t=0X) 1-P(t=1|x)

* Weight treatment cases as

* Weight control cases as

* Protects against

* variables unavailable for propensity scores, but baked
into sampling weights

* allocating degrees of freedom to the wrong regions of x
* sampling weights that depend on treatment assignment
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